ARNTL and SIRT1 |
aryl hydrocarbon receptor nuclear translocator-like |
sirtuin 1 |
- PPARA activates gene expression
- Fatty acid, triacylglycerol, and ketone body metabolism
- Metabolism of lipids and lipoproteins
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- REV-ERBA represses gene expression
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- RORA activates circadian gene expression
|
- Epigenetic regulation of gene expression
- Negative epigenetic regulation of rRNA expression
- SIRT1 negatively regulates rRNA Expression
- Cellular response to heat stress
- Regulation of HSF1-mediated heat shock response
|
|
|
|
|
ARNTL and NPAS4 |
aryl hydrocarbon receptor nuclear translocator-like |
neuronal PAS domain protein 4 |
- PPARA activates gene expression
- Fatty acid, triacylglycerol, and ketone body metabolism
- Metabolism of lipids and lipoproteins
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- REV-ERBA represses gene expression
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- RORA activates circadian gene expression
|
|
|
|
|
|
ARNTL and HSP90AA1 |
aryl hydrocarbon receptor nuclear translocator-like |
heat shock protein 90kDa alpha (cytosolic), class A member 1 |
- PPARA activates gene expression
- Fatty acid, triacylglycerol, and ketone body metabolism
- Metabolism of lipids and lipoproteins
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- REV-ERBA represses gene expression
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- RORA activates circadian gene expression
|
- HSF1 activation
- Regulatory RNA pathways
- Signaling by EGFRvIII in Cancer
- Regulation of PLK1 Activity at G2/M Transition
- Influenza Life Cycle
- Influenza Viral RNA Transcription and Replication
- Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants
- Uptake and actions of bacterial toxins
- EPH-Ephrin signaling
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Fcgamma receptor (FCGR) dependent phagocytosis
- Recruitment of mitotic centrosome proteins and complexes
- Regulation of actin dynamics for phagocytic cup formation
- vRNP Assembly
- Influenza Infection
- Signaling by ERBB2
- Signaling by VEGF
- Signaling by EGFR in Cancer
- Sema3A PAK dependent Axon repulsion
- Mitotic G2-G2/M phases
- Uptake and function of diphtheria toxin
- PIWI-interacting RNA (piRNA) biogenesis
- Organelle biogenesis and maintenance
- Axon guidance
- Attenuation phase
- G2/M Transition
- VEGFA-VEGFR2 Pathway
- HSF1-dependent transactivation
- EPHA-mediated growth cone collapse
- Metabolism of nitric oxide
- VEGFR2 mediated vascular permeability
- Loss of Nlp from mitotic centrosomes
- Scavenging by Class F Receptors
- eNOS activation and regulation
- Innate Immune System
- Semaphorin interactions
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- Assembly of the primary cilium
- Cellular response to heat stress
- Anchoring of the basal body to the plasma membrane
- Cell Cycle, Mitotic
- eNOS activation
- Loss of proteins required for interphase microtubule organization from the centrosome
- Centrosome maturation
- Constitutive Signaling by EGFRvIII
|
|
- Rifabutin
- Nedocromil
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-9h-Purin-6-Ylamine
- Geldanamycin
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-2-Fluoro-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- 9-Butyl-8-(3,4,5-Trimethoxybenzyl)-9h-Purin-6-Amine
- 4-(1,3-Benzodioxol-5-Yl)-5-(5-Ethyl-2,4-Dihydroxyphenyl)-2h-Pyrazole-3-Carboxylic Acid
- 17-Dmag
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9-Pent-9h-Purin-6-Ylamine
- Adenosine-5\'-Diphosphate
- 9-Butyl-8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9h-Purin-6-Ylamine
- 4-(1h-Imidazol-4-Yl)-3-(5-Ethyl-2,4-Dihydroxy-Phenyl)-1h-Pyrazole
- 9-Butyl-8-(3-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(4-Methoxybenzyl)-9h-Purin-6-Amine
- 9-Butyl-8-(2,5-Dimethoxy-Benzyl)-2-Fluoro-9h-Purin-6-Ylamine
- 8-Benzo[1,3]Dioxol-,5-Ylmethyl-9-Butyl-2-Fluoro-9h-Purin-6-Ylamine
- 8-(2-Chloro-3,4,5-Trimethoxy-Benzyl)-9-Pent-4-Ylnyl-9h-Purin-6-Ylamine
- N-[4-(AMINOSULFONYL)BENZYL]-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- N-(4-ACETYLPHENYL)-5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-1H-PYRAZOLE-4-CARBOXAMIDE
- 4-CHLORO-6-(4-{4-[4-(METHYLSULFONYL)BENZYL]PIPERAZIN-1-YL}-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-PIPERAZIN-1-YL-1H-PYRAZOLE-3-CARBOXAMIDE
- 5-(5-chloro-2,4-dihydroxyphenyl)-N-ethyl-4-[4-(morpholin-4-ylmethyl)phenyl]isoxazole-3-carboxamide
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)ISOXAZOLE-3-CARBOXAMIDE
- 2-amino-4-[2,4-dichloro-5-(2-pyrrolidin-1-ylethoxy)phenyl]-N-ethylthieno[2,3-d]pyrimidine-6-carboxamide
- 4-CHLORO-6-(4-PIPERAZIN-1-YL-1H-PYRAZOL-5-YL)BENZENE-1,3-DIOL
- (3E)-3-[(phenylamino)methylidene]dihydrofuran-2(3H)-one
- 6-(3-BROMO-2-NAPHTHYL)-1,3,5-TRIAZINE-2,4-DIAMINE
- 3-({2-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)ETHYNYL]BENZYL}AMINO)-1,3-OXAZOL-2(3H)-ONE
- N-[(2-AMINO-6-METHYLPYRIMIDIN-4-YL)METHYL]-3-{[(E)-(2-OXODIHYDROFURAN-3(2H)-YLIDENE)METHYL]AMINO}BENZENESULFONAMIDE
- 5-(5-CHLORO-2,4-DIHYDROXYPHENYL)-N-ETHYL-4-(4-METHOXYPHENYL)-1H-PYRAZOLE-3-CARBOXAMIDE
- 4-bromo-6-(6-hydroxy-1,2-benzisoxazol-3-yl)benzene-1,3-diol
- 4-[4-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YL)-3-METHYL-1H-PYRAZOL-5-YL]-6-ETHYLBENZENE-1,3-DIOL
- 4-chloro-6-{5-[(2-morpholin-4-ylethyl)amino]-1,2-benzisoxazol-3-yl}benzene-1,3-diol
- 8-(6-BROMO-BENZO[1,3]DIOXOL-5-YLSULFANYL)-9-(3-ISOPROPYLAMINO-PROPYL)-ADENINE
- 4-methyl-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidin-2-amine
- (5E,7S)-2-amino-7-(4-fluoro-2-pyridin-3-ylphenyl)-4-methyl-7,8-dihydroquinazolin-5(6H)-one oxime
- 8-BENZO[1,3]DIOXOL-,5-YLMETHYL-9-BUTYL-9H-
- 4-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol
- 2-(1H-pyrrol-1-ylcarbonyl)benzene-1,3,5-triol
- 2-[(2-methoxyethyl)amino]-4-(4-oxo-1,2,3,4-tetrahydro-9H-carbazol-9-yl)benzamide
- 4-(2-methoxyethoxy)-6-methylpyrimidin-2-amine
- 4-(2,4-dichlorophenyl)-5-phenyldiazenyl-pyrimidin-2-amine
- 3,6-DIAMINO-5-CYANO-4-(4-ETHOXYPHENYL)THIENO[2,3-B]PYRIDINE-2-CARBOXAMIDE
- 2-AMINO-4-(2,4-DICHLOROPHENYL)-N-ETHYLTHIENO[2,3-D]PYRIMIDINE-6-CARBOXAMIDE
|
|
|
ARNTL and NPAS2 |
aryl hydrocarbon receptor nuclear translocator-like |
neuronal PAS domain protein 2 |
- PPARA activates gene expression
- Fatty acid, triacylglycerol, and ketone body metabolism
- Metabolism of lipids and lipoproteins
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- REV-ERBA represses gene expression
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- RORA activates circadian gene expression
|
- PPARA activates gene expression
- Fatty acid, triacylglycerol, and ketone body metabolism
- Metabolism of lipids and lipoproteins
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- REV-ERBA represses gene expression
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- RORA activates circadian gene expression
|
|
|
|
|
ARNTL and CRY1 |
aryl hydrocarbon receptor nuclear translocator-like |
cryptochrome circadian clock 1 |
- PPARA activates gene expression
- Fatty acid, triacylglycerol, and ketone body metabolism
- Metabolism of lipids and lipoproteins
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- REV-ERBA represses gene expression
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
- RORA activates circadian gene expression
|
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
|
|
|
|
|
ASCL1 and TCF4 |
achaete-scute family bHLH transcription factor 1 |
transcription factor 4 |
|
- CDO in myogenesis
- Myogenesis
|
|
|
|
|
ATF3 and HDAC4 |
activating transcription factor 3 |
histone deacetylase 4 |
- ATF4 activates genes
- PERK regulates gene expression
- Unfolded Protein Response (UPR)
|
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- Signaling by NOTCH
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- NOTCH1 Intracellular Domain Regulates Transcription
- Signaling by NOTCH1
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Signaling by NOTCH1 in Cancer
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
- FBXW7 Mutants and NOTCH1 in Cancer
|
|
|
|
|
ATF3 and NFKB1 |
activating transcription factor 3 |
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 |
- ATF4 activates genes
- PERK regulates gene expression
- Unfolded Protein Response (UPR)
|
- Signaling by the B Cell Receptor (BCR)
- NF-kB is activated and signals survival
- Downstream TCR signaling
- Toll Like Receptor 7/8 (TLR7/8) Cascade
- Cellular Senescence
- RIP-mediated NFkB activation via ZBP1
- Toll Like Receptor TLR6:TLR2 Cascade
- DEx/H-box helicases activate type I IFN and inflammatory cytokines production
- Activated TLR4 signalling
- Toll Like Receptor TLR1:TLR2 Cascade
- Downstream signaling events of B Cell Receptor (BCR)
- FCERI mediated NF-kB activation
- MyD88 cascade initiated on plasma membrane
- Toll Like Receptor 5 (TLR5) Cascade
- ZBP1(DAI) mediated induction of type I IFNs
- p75NTR signals via NF-kB
- Transcriptional regulation of white adipocyte differentiation
- MyD88 dependent cascade initiated on endosome
- TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation
- MyD88:Mal cascade initiated on plasma membrane
- Toll Like Receptor 9 (TLR9) Cascade
- Innate Immune System
- Regulated proteolysis of p75NTR
- Signalling by NGF
- TRIF-mediated TLR3/TLR4 signaling
- Cytosolic sensors of pathogen-associated DNA
- Senescence-Associated Secretory Phenotype (SASP)
- Cytokine Signaling in Immune system
- p75 NTR receptor-mediated signalling
- MyD88-independent cascade
- Toll Like Receptor 2 (TLR2) Cascade
- RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
- Signaling by Interleukins
- TCR signaling
- Toll-Like Receptors Cascades
- Toll Like Receptor 10 (TLR10) Cascade
- Interleukin-1 processing
- Toll Like Receptor 3 (TLR3) Cascade
- Toll Like Receptor 4 (TLR4) Cascade
- Activation of NF-kappaB in B cells
- Fc epsilon receptor (FCERI) signaling
- TRAF6 mediated NF-kB activation
- Interleukin-1 signaling
- Adaptive Immune System
- TAK1 activates NFkB by phosphorylation and activation of IKKs complex
|
|
- Thalidomide
- Pranlukast
- Triflusal
|
|
|
ATF4 and DISC1 |
activating transcription factor 4 |
disrupted in schizophrenia 1 |
- ATF4 activates genes
- PERK regulates gene expression
- ATF6-alpha activates chaperones
- ATF6-alpha activates chaperone genes
- Unfolded Protein Response (UPR)
|
|
|
|
|
|
RERE and NR2E1 |
arginine-glutamic acid dipeptide (RE) repeats |
nuclear receptor subfamily 2, group E, member 1 |
|
- Generic Transcription Pathway
- Nuclear Receptor transcription pathway
|
|
|
|
|
RERE and LZTR1 |
arginine-glutamic acid dipeptide (RE) repeats |
leucine-zipper-like transcription regulator 1 |
|
|
|
|
|
|
RERE and EFEMP1 |
arginine-glutamic acid dipeptide (RE) repeats |
EGF containing fibulin-like extracellular matrix protein 1 |
|
- Molecules associated with elastic fibres
- Elastic fibre formation
|
|
|
|
|
RERE and ATN1 |
arginine-glutamic acid dipeptide (RE) repeats |
atrophin 1 |
|
|
|
|
|
|
RERE and TRIP6 |
arginine-glutamic acid dipeptide (RE) repeats |
thyroid hormone receptor interactor 6 |
|
|
|
|
|
|
RERE and EHMT2 |
arginine-glutamic acid dipeptide (RE) repeats |
euchromatic histone-lysine N-methyltransferase 2 |
|
- Chromatin modifying enzymes
- Chromatin organization
- RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription
- RNA Polymerase I Transcription
- RNA Polymerase I Transcription Initiation
- PKMTs methylate histone lysines
- RNA Polymerase I Promoter Clearance
- Cellular Senescence
- Senescence-Associated Secretory Phenotype (SASP)
|
|
|
|
|
RERE and KRTAP4-12 |
arginine-glutamic acid dipeptide (RE) repeats |
keratin associated protein 4-12 |
|
|
|
|
|
|
RERE and CBFA2T2 |
arginine-glutamic acid dipeptide (RE) repeats |
core-binding factor, runt domain, alpha subunit 2; translocated to, 2 |
|
|
|
|
|
|
RERE and PSMA3 |
arginine-glutamic acid dipeptide (RE) repeats |
proteasome (prosome, macropain) subunit, alpha type, 3 |
|
- Hedgehog 'off' state
- misspliced GSK3beta mutants stabilize beta-catenin
- Hh ligand biogenesis disease
- T41 mutants of beta-catenin aren't phosphorylated
- Downstream signaling events of B Cell Receptor (BCR)
- Degradation of beta-catenin by the destruction complex
- Stabilization of p53
- S33 mutants of beta-catenin aren't phosphorylated
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- Removal of licensing factors from origins
- Switching of origins to a post-replicative state
- Mitotic G1-G1/S phases
- Regulation of mRNA stability by proteins that bind AU-rich elements
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- DNA Replication Pre-Initiation
- S45 mutants of beta-catenin aren't phosphorylated
- APC/C:Cdc20 mediated degradation of mitotic proteins
- Regulation of APC/C activators between G1/S and early anaphase
- SCF(Skp2)-mediated degradation of p27/p21
- deletions in the AMER1 gene destabilize the destruction complex
- Autodegradation of the E3 ubiquitin ligase COP1
- AMER1 mutants destabilize the destruction complex
- Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins
- APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint
- PCP/CE pathway
- Adaptive Immune System
- CDK-mediated phosphorylation and removal of Cdc6
- Hedgehog ligand biogenesis
- APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1
- Separation of Sister Chromatids
- HIV Infection
- Ubiquitin-dependent degradation of Cyclin D
- APC truncation mutants have impaired AXIN binding
- Assembly of the pre-replicative complex
- Autodegradation of Cdh1 by Cdh1:APC/C
- p53-Dependent G1 DNA Damage Response
- S37 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- p53-Independent DNA Damage Response
- p53-Independent G1/S DNA damage checkpoint
- G1/S DNA Damage Checkpoints
- Vpu mediated degradation of CD4
- Synthesis of DNA
- M/G1 Transition
- Ubiquitin-dependent degradation of Cyclin D1
- TCF dependent signaling in response to WNT
- SCF-beta-TrCP mediated degradation of Emi1
- degradation of AXIN
- Signaling by Hedgehog
- Regulation of mitotic cell cycle
- Degradation of GLI1 by the proteasome
- degradation of DVL
- Cell Cycle Checkpoints
- Signaling by WNT in cancer
- GLI3 is processed to GLI3R by the proteasome
- Regulation of Apoptosis
- Degradation of GLI2 by the proteasome
- Signaling by the B Cell Receptor (BCR)
- Vif-mediated degradation of APOBEC3G
- Ubiquitin Mediated Degradation of Phosphorylated Cdc25A
- p53-Dependent G1/S DNA damage checkpoint
- truncated APC mutants destabilize the destruction complex
- TCF7L2 mutants don't bind CTBP
- Signaling by Wnt
- Cyclin E associated events during G1/S transition
- APC/C:Cdc20 mediated degradation of Securin
- AUF1 (hnRNP D0) destabilizes mRNA
- CDK-mediated phosphorylation and removal of Cdc6
- RNF mutants show enhanced WNT signaling and proliferation
- G1/S Transition
- truncations of AMER1 destabilize the destruction complex
- Processing-defective Hh variants abrogate ligand secretion
- Host Interactions of HIV factors
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- Regulation of activated PAK-2p34 by proteasome mediated degradation
- AXIN missense mutants destabilize the destruction complex
- S Phase
- APC/C-mediated degradation of cell cycle proteins
- Cyclin A:Cdk2-associated events at S phase entry
- SCF(Skp2)-mediated degradation of p27/p21
- Mitotic Metaphase and Anaphase
- Regulation of ornithine decarboxylase (ODC)
- Antigen processing: Ubiquitination & Proteasome degradation
- Orc1 removal from chromatin
- Mitotic Anaphase
- M Phase
- APC truncation mutants are not K63 polyubiquitinated
- Metabolism of amino acids and derivatives
- Hedgehog 'on' state
- Programmed Cell Death
- Class I MHC mediated antigen processing & presentation
- Regulation of DNA replication
- Cell Cycle, Mitotic
- beta-catenin independent WNT signaling
- Orc1 removal from chromatin
- Activation of NF-kappaB in B cells
- Asymmetric localization of PCP proteins
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Cross-presentation of soluble exogenous antigens (endosomes)
- Antigen processing-Cross presentation
- CDT1 association with the CDC6:ORC:origin complex
- ER-Phagosome pathway
|
|
|
|
|
RERE and EFEMP2 |
arginine-glutamic acid dipeptide (RE) repeats |
EGF containing fibulin-like extracellular matrix protein 2 |
|
- Molecules associated with elastic fibres
- Elastic fibre formation
|
|
|
|
|
RERE and KAT6A |
arginine-glutamic acid dipeptide (RE) repeats |
K(lysine) acetyltransferase 6A |
|
- Chromatin modifying enzymes
- Chromatin organization
- HATs acetylate histones
|
|
|
|
|