Search Results for: Cancer

23406 interactions found:

Symbols Name 1 Name 2
Pathways 1
Pathways 2
Drugs 1
Drugs 2
Diseases 1
Diseases 2
TP53 and APTX tumor protein p53 aprataxin
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
AGT and TP53 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) tumor protein p53
  • Defective ACTH causes Obesity and Pro-opiomelanocortinin deficiency (POMCD)
  • G alpha (q) signalling events
  • Signaling by GPCR
  • PPARA activates gene expression
  • Fatty acid, triacylglycerol, and ketone body metabolism
  • Metabolism of lipids and lipoproteins
  • Class A/1 (Rhodopsin-like receptors)
  • Metabolic disorders of biological oxidation enzymes
  • GPCR ligand binding
  • G alpha (q) signalling events
  • Peptide hormone metabolism
  • GPCR downstream signaling
  • Peptide ligand-binding receptors
  • Gastrin-CREB signalling pathway via PKC and MAPK
  • Metabolism of Angiotensinogen to Angiotensins
  • G alpha (i) signalling events
  • Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
CD40LG and TP53 CD40 ligand tumor protein p53
  • Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
  • Adaptive Immune System
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
CHUK and TP53 conserved helix-loop-helix ubiquitous kinase tumor protein p53
  • Signaling by the B Cell Receptor (BCR)
  • Signaling by FGFR in disease
  • Signaling by EGFRvIII in Cancer
  • AKT phosphorylates targets in the cytosol
  • RIP-mediated NFkB activation via ZBP1
  • IRAK1 recruits IKK complex
  • Signaling by SCF-KIT
  • Toll Like Receptor TLR1:TLR2 Cascade
  • DAP12 signaling
  • Downstream signaling events of B Cell Receptor (BCR)
  • FCERI mediated NF-kB activation
  • PI3K/AKT activation
  • Toll Like Receptor 5 (TLR5) Cascade
  • PI-3K cascade
  • NOD1/2 Signaling Pathway
  • MyD88 dependent cascade initiated on endosome
  • Toll Like Receptor 9 (TLR9) Cascade
  • IRAK1 recruits IKK complex
  • Signaling by PDGF
  • DAP12 interactions
  • GAB1 signalosome
  • TRIF-mediated TLR3/TLR4 signaling
  • Signaling by ERBB4
  • Role of LAT2/NTAL/LAB on calcium mobilization
  • Constitutive PI3K/AKT Signaling in Cancer
  • PI3K events in ERBB4 signaling
  • Toll Like Receptor 2 (TLR2) Cascade
  • Signaling by ERBB2
  • Signaling by EGFR
  • Signaling by Interleukins
  • TCR signaling
  • Downstream signal transduction
  • Toll Like Receptor 3 (TLR3) Cascade
  • Toll Like Receptor 4 (TLR4) Cascade
  • Signaling by EGFR in Cancer
  • Fc epsilon receptor (FCERI) signaling
  • Interleukin-1 signaling
  • PI3K/AKT Signaling in Cancer
  • TAK1 activates NFkB by phosphorylation and activation of IKKs complex
  • Adaptive Immune System
  • Downstream TCR signaling
  • PIP3 activates AKT signaling
  • Toll Like Receptor 7/8 (TLR7/8) Cascade
  • Toll Like Receptor TLR6:TLR2 Cascade
  • Activated TLR4 signalling
  • MyD88 cascade initiated on plasma membrane
  • ZBP1(DAI) mediated induction of type I IFNs
  • PI3K events in ERBB2 signaling
  • Downstream signaling of activated FGFR
  • TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation
  • MyD88:Mal cascade initiated on plasma membrane
  • Innate Immune System
  • Signalling by NGF
  • IKK complex recruitment mediated by RIP1
  • Cytosolic sensors of pathogen-associated DNA
  • Cytokine Signaling in Immune system
  • Signaling by Ligand-Responsive EGFR Variants in Cancer
  • NGF signalling via TRKA from the plasma membrane
  • Signaling by Overexpressed Wild-Type EGFR in Cancer
  • MyD88-independent cascade
  • Signaling by FGFR
  • RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
  • Toll-Like Receptors Cascades
  • Toll Like Receptor 10 (TLR10) Cascade
  • Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways
  • Activation of NF-kappaB in B cells
  • TRAF6 mediated NF-kB activation
  • NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10
  • IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
CREBBP and TP53 CREB binding protein tumor protein p53
  • Signaling by NOTCH1 HD Domain Mutants in Cancer
  • Metabolism of lipids and lipoproteins
  • Signaling by Wnt
  • Regulation of gene expression by Hypoxia-inducible Factor
  • Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
  • Generic Transcription Pathway
  • Pre-NOTCH Transcription and Translation
  • RNF mutants show enhanced WNT signaling and proliferation
  • Signaling by NOTCH1 in Cancer
  • Orphan transporters
  • Chromatin organization
  • misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
  • Signaling by NOTCH
  • formation of the beta-catenin:TCF transactivating complex
  • Factors involved in megakaryocyte development and platelet production
  • Chromatin modifying enzymes
  • LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
  • Signaling by NOTCH1 PEST Domain Mutants in Cancer
  • Activation of gene expression by SREBF (SREBP)
  • Transcriptional activation of mitochondrial biogenesis
  • Constitutive Signaling by NOTCH1 PEST Domain Mutants
  • PPARA activates gene expression
  • Cellular response to hypoxia
  • Organelle biogenesis and maintenance
  • Regulation of Hypoxia-inducible Factor (HIF) by oxygen
  • Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
  • Attenuation phase
  • HATs acetylate histones
  • RORA activates circadian gene expression
  • Regulation of cholesterol biosynthesis by SREBP (SREBF)
  • HSF1-dependent transactivation
  • TRAF3-dependent IRF activation pathway
  • Signaling by NOTCH1
  • Transcriptional regulation of white adipocyte differentiation
  • XAV939 inhibits tankyrase, stabilizing AXIN
  • Pre-NOTCH Expression and Processing
  • Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
  • Innate Immune System
  • FBXW7 Mutants and NOTCH1 in Cancer
  • Fatty acid, triacylglycerol, and ketone body metabolism
  • Cytosolic sensors of pathogen-associated DNA
  • Cellular response to heat stress
  • REV-ERBA represses gene expression
  • Mitochondrial biogenesis
  • Notch-HLH transcription pathway
  • RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
  • NOTCH1 Intracellular Domain Regulates Transcription
  • TCF dependent signaling in response to WNT
  • TRAF6 mediated IRF7 activation
  • YAP1- and WWTR1 (TAZ)-stimulated gene expression
  • Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
  • Signaling by WNT in cancer
  • BMAL1:CLOCK,NPAS2 activates circadian gene expression
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
DDB1 and TP53 damage-specific DNA binding protein 1, 127kDa tumor protein p53
  • Nucleotide Excision Repair
  • Global Genomic NER (GG-NER)
  • Formation of incision complex in GG-NER
  • Dual incision reaction in GG-NER
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
DDX5 and TP53 DEAD (Asp-Glu-Ala-Asp) box helicase 5 tumor protein p53
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
DHCR24 and TP53 24-dehydrocholesterol reductase tumor protein p53
  • Cholesterol biosynthesis
  • Metabolism of lipids and lipoproteins
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
ANK2 and TP53 ankyrin 2, neuronal tumor protein p53
  • Interaction between L1 and Ankyrins
  • Axon guidance
  • L1CAM interactions
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
EP300 and TP53 E1A binding protein p300 tumor protein p53
  • Signaling by NOTCH1 HD Domain Mutants in Cancer
  • Metabolism of lipids and lipoproteins
  • Signaling by Wnt
  • NOTCH2 intracellular domain regulates transcription
  • Regulation of gene expression by Hypoxia-inducible Factor
  • Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
  • Signaling by NOTCH2
  • Pre-NOTCH Transcription and Translation
  • RNF mutants show enhanced WNT signaling and proliferation
  • Signaling by NOTCH1 in Cancer
  • Chromatin organization
  • misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
  • Signaling by NOTCH
  • formation of the beta-catenin:TCF transactivating complex
  • Factors involved in megakaryocyte development and platelet production
  • Chromatin modifying enzymes
  • LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
  • Signaling by NOTCH1 PEST Domain Mutants in Cancer
  • Mitotic G2-G2/M phases
  • Constitutive Signaling by NOTCH1 PEST Domain Mutants
  • PPARA activates gene expression
  • Cellular response to hypoxia
  • Regulation of Hypoxia-inducible Factor (HIF) by oxygen
  • Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
  • Attenuation phase
  • G2/M Transition
  • HATs acetylate histones
  • RORA activates circadian gene expression
  • HSF1-dependent transactivation
  • TRAF3-dependent IRF activation pathway
  • Signaling by NOTCH1
  • Transcriptional regulation of white adipocyte differentiation
  • XAV939 inhibits tankyrase, stabilizing AXIN
  • Pre-NOTCH Expression and Processing
  • Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
  • FBXW7 Mutants and NOTCH1 in Cancer
  • Innate Immune System
  • Fatty acid, triacylglycerol, and ketone body metabolism
  • Cytosolic sensors of pathogen-associated DNA
  • Cellular response to heat stress
  • REV-ERBA represses gene expression
  • Cell Cycle, Mitotic
  • RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
  • NOTCH1 Intracellular Domain Regulates Transcription
  • TCF dependent signaling in response to WNT
  • TRAF6 mediated IRF7 activation
  • Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
  • Signaling by WNT in cancer
  • BMAL1:CLOCK,NPAS2 activates circadian gene expression
  • Polo-like kinase mediated events
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
ERCC2 and TP53 excision repair cross-complementation group 2 tumor protein p53
  • RNA Polymerase II Promoter Escape
  • Formation of HIV-1 elongation complex containing HIV-1 Tat
  • Nucleotide Excision Repair
  • RNA Polymerase II Transcription Pre-Initiation And Promoter Opening
  • RNA Polymerase I Chain Elongation
  • RNA Polymerase II Transcription
  • RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription
  • RNA Polymerase I Transcription Initiation
  • RNA Polymerase I Promoter Clearance
  • HIV Infection
  • Formation of the Early Elongation Complex
  • Tat-mediated elongation of the HIV-1 transcript
  • Formation of transcription-coupled NER (TC-NER) repair complex
  • RNA Pol II CTD phosphorylation and interaction with CE
  • RNA Polymerase II Pre-transcription Events
  • Dual incision reaction in TC-NER
  • NoRC negatively regulates rRNA expression
  • HIV Transcription Initiation
  • HIV Life Cycle
  • RNA Pol II CTD phosphorylation and interaction with CE
  • Cytosolic iron-sulfur cluster assembly
  • RNA Polymerase II HIV Promoter Escape
  • HIV Transcription Elongation
  • Dual incision reaction in GG-NER
  • mRNA Capping
  • RNA Polymerase I Transcription
  • RNA Polymerase I Promoter Escape
  • RNA Polymerase I Transcription Termination
  • Epigenetic regulation of gene expression
  • Negative epigenetic regulation of rRNA expression
  • Late Phase of HIV Life Cycle
  • Formation of RNA Pol II elongation complex
  • Global Genomic NER (GG-NER)
  • RNA Polymerase II Transcription Initiation And Promoter Clearance
  • Transcription-coupled NER (TC-NER)
  • Formation of HIV elongation complex in the absence of HIV Tat
  • Formation of the HIV-1 Early Elongation Complex
  • Formation of incision complex in GG-NER
  • RNA Polymerase II Transcription Initiation
  • Transcription of the HIV genome
  • RNA Polymerase II Transcription Elongation
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
ERCC3 and TP53 excision repair cross-complementation group 3 tumor protein p53
  • RNA Polymerase II Promoter Escape
  • Formation of HIV-1 elongation complex containing HIV-1 Tat
  • Nucleotide Excision Repair
  • RNA Polymerase II Transcription Pre-Initiation And Promoter Opening
  • RNA Polymerase I Chain Elongation
  • RNA Polymerase II Transcription
  • RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription
  • RNA Polymerase I Transcription Initiation
  • RNA Polymerase I Promoter Clearance
  • HIV Infection
  • Formation of the Early Elongation Complex
  • Tat-mediated elongation of the HIV-1 transcript
  • Formation of transcription-coupled NER (TC-NER) repair complex
  • RNA Pol II CTD phosphorylation and interaction with CE
  • RNA Polymerase II Pre-transcription Events
  • Dual incision reaction in TC-NER
  • NoRC negatively regulates rRNA expression
  • HIV Transcription Initiation
  • HIV Life Cycle
  • RNA Pol II CTD phosphorylation and interaction with CE
  • RNA Polymerase II HIV Promoter Escape
  • HIV Transcription Elongation
  • Dual incision reaction in GG-NER
  • mRNA Capping
  • RNA Polymerase I Transcription
  • RNA Polymerase I Promoter Escape
  • RNA Polymerase I Transcription Termination
  • Epigenetic regulation of gene expression
  • Negative epigenetic regulation of rRNA expression
  • Late Phase of HIV Life Cycle
  • Formation of RNA Pol II elongation complex
  • Global Genomic NER (GG-NER)
  • RNA Polymerase II Transcription Initiation And Promoter Clearance
  • Transcription-coupled NER (TC-NER)
  • Formation of HIV elongation complex in the absence of HIV Tat
  • Formation of the HIV-1 Early Elongation Complex
  • Formation of incision complex in GG-NER
  • RNA Polymerase II Transcription Initiation
  • Transcription of the HIV genome
  • RNA Polymerase II Transcription Elongation
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
NR3C1 and TP53 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) tumor protein p53
  • BMAL1:CLOCK,NPAS2 activates circadian gene expression
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
  • Flunisolide
  • Diflorasone
  • Alclometasone
  • Medrysone
  • Amcinonide
  • Fluorometholone
  • Megestrol
  • Beclometasone dipropionate
  • Betamethasone
  • Desoximetasone
  • Fluticasone Propionate
  • Fluocinolone Acetonide
  • Halobetasol Propionate
  • Triamcinolone
  • Prednisone
  • Flumethasone Pivalate
  • Fludrocortisone
  • Hydrocortisone
  • Mometasone
  • Hydrocortamate
  • Mifepristone
  • Clocortolone
  • Flurandrenolide
  • Prednisolone
  • Loteprednol
  • Rimexolone
  • Methylprednisolone
  • Clobetasol
  • Fluocinonide
  • Prednicarbate
  • Fluoxymesterone
  • Budesonide
  • Dexamethasone
  • Desonide
  • Cortisone acetate
  • Paramethasone
  • Ciclesonide
  • Hexane-1,6-Diol
  • Difluprednate
  • Fluticasone furoate
HTT and TP53 huntingtin tumor protein p53
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
HNF4A and TP53 hepatocyte nuclear factor 4, alpha tumor protein p53
  • Generic Transcription Pathway
  • Nuclear Receptor transcription pathway
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
HSPB1 and TP53 heat shock 27kDa protein 1 tumor protein p53
  • Regulation of mRNA stability by proteins that bind AU-rich elements
  • Signaling by VEGF
  • AUF1 (hnRNP D0) destabilizes mRNA
  • VEGFA-VEGFR2 Pathway
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
SMAD2 and TP53 SMAD family member 2 tumor protein p53
  • Loss of Function of TGFBR2 in Cancer
  • SMAD2/3 MH2 Domain Mutants in Cancer
  • Downregulation of TGF-beta receptor signaling
  • TGF-beta receptor signaling activates SMADs
  • TGFBR1 LBD Mutants in Cancer
  • Downregulation of SMAD2/3:SMAD4 transcriptional activity
  • SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription
  • Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer
  • Generic Transcription Pathway
  • Signaling by NODAL
  • TGFBR2 MSI Frameshift Mutants in Cancer
  • SMAD2/3 Phosphorylation Motif Mutants in Cancer
  • Loss of Function of SMAD2/3 in Cancer
  • Signaling by Activin
  • TGFBR2 Kinase Domain Mutants in Cancer
  • Loss of Function of SMAD4 in Cancer
  • TGFBR1 KD Mutants in Cancer
  • Loss of Function of TGFBR1 in Cancer
  • Signaling by TGF-beta Receptor Complex in Cancer
  • Signaling by TGF-beta Receptor Complex
  • SMAD4 MH2 Domain Mutants in Cancer
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
NDN and TP53 necdin, melanoma antigen (MAGE) family member tumor protein p53
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
PNP and TP53 purine nucleoside phosphorylase tumor protein p53
  • Purine catabolism
  • Purine metabolism
  • Metabolism of nucleotides
  • Purine salvage
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints
  • Cladribine
  • Didanosine
  • 8-azaguanine
  • 2,6-Diamino-(S)-9-[2-(Phosphonomethoxy)Propyl]Purine
  • Immucillin-G
  • Guanine
  • 2-Amino-7-[2-(2-Hydroxy-1-Hydroxymethyl-Ethylamino)-Ethyl]-1,7-Dihydro-Purin-6-One
  • Peldesine
  • 9-Deazainosine
  • Guanosine
  • Ribose-1-Phosphate
  • 4\'-Deaza-1\'-Aza-2\'-Deoxy-1\'-(9-Methylene)-Immucillin-H, (3r,4r)-N-[9-Deazahypoxanthin-9-Yl)Methyl]-4-Hydroxymethyl-Pyrrolidin-3-Ol
  • 3-Deoxyguanosine
  • MT-Immucillin-H
  • Hypoxanthine
  • 9-(5,5-Difluoro-5-Phosphonopentyl)Guanine
  • 9-DEAZAINOSINE-2\',3\'-O-ETHYLIDENEPHOSPHONATE
  • GUANOSINE-2\',3\'-O-ETHYLIDENEPHOSPHONATE
  • GUANOSINE-2\',3\'-O-METHYLIDENEPHOSPHONATE
PLAGL1 and TP53 pleiomorphic adenoma gene-like 1 tumor protein p53
  • Cellular Senescence
  • Activation of BH3-only proteins
  • p53-Dependent G1/S DNA damage checkpoint
  • Oncogene Induced Senescence
  • p53-Dependent G1 DNA Damage Response
  • Formation of Senescence-Associated Heterochromatin Foci (SAHF)
  • Pre-NOTCH Transcription and Translation
  • Stabilization of p53
  • Transcriptional activation of p53 responsive genes
  • Programmed Cell Death
  • Pre-NOTCH Expression and Processing
  • G1/S DNA Damage Checkpoints
  • Intrinsic Pathway for Apoptosis
  • Transcriptional activation of cell cycle inhibitor p21
  • DNA Damage/Telomere Stress Induced Senescence
  • Signaling by NOTCH
  • Factors involved in megakaryocyte development and platelet production
  • Activation of NOXA and translocation to mitochondria
  • Oxidative Stress Induced Senescence
  • Autodegradation of the E3 ubiquitin ligase COP1
  • Activation of PUMA and translocation to mitochondria
  • Cell Cycle Checkpoints

Page 2 out of 1171 pages