CTNNB1 and NOTCH1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
notch 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Constitutive Signaling by NOTCH1 HD Domain Mutants
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- Pre-NOTCH Processing in the Endoplasmic Reticulum
- Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- Regulation of beta-cell development
- Generic Transcription Pathway
- Pre-NOTCH Transcription and Translation
- Signaling by NOTCH1
- Pre-NOTCH Expression and Processing
- Signaling by NOTCH1 in Cancer
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling
- FBXW7 Mutants and NOTCH1 in Cancer
- Pre-NOTCH Processing in Golgi
- Signaling by NOTCH
- Notch-HLH transcription pathway
- Activated NOTCH1 Transmits Signal to the Nucleus
- NOTCH1 Intracellular Domain Regulates Transcription
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Regulation of gene expression in late stage (branching morphogenesis) pancreatic bud precursor cells
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
|
|
|
|
|
CTNNB1 and RBX1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
ring-box 1, E3 ubiquitin protein ligase |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Vif-mediated degradation of APOBEC3G
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Hedgehog 'off' state
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- truncated APC mutants destabilize the destruction complex
- TCF7L2 mutants don't bind CTBP
- Signaling by Wnt
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- Degradation of beta-catenin by the destruction complex
- RNF mutants show enhanced WNT signaling and proliferation
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- S33 mutants of beta-catenin aren't phosphorylated
- Signaling by NOTCH1 in Cancer
- Prolactin receptor signaling
- truncations of AMER1 destabilize the destruction complex
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Signaling by NOTCH
- Host Interactions of HIV factors
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- Signaling by ERBB4
- Signaling by Interleukins
- deletions in the AMER1 gene destabilize the destruction complex
- AMER1 mutants destabilize the destruction complex
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Interleukin-1 signaling
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
- Adaptive Immune System
- Cellular response to hypoxia
- Antigen processing: Ubiquitination & Proteasome degradation
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha
- HIV Infection
- APC truncation mutants have impaired AXIN binding
- APC truncation mutants are not K63 polyubiquitinated
- S37 mutants of beta-catenin aren't phosphorylated
- Hedgehog 'on' state
- Signaling by NOTCH1
- XAV939 inhibits tankyrase, stabilizing AXIN
- Class I MHC mediated antigen processing & presentation
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling
- FBXW7 Mutants and NOTCH1 in Cancer
- Cytokine Signaling in Immune system
- Nuclear signaling by ERBB4
- NOTCH1 Intracellular Domain Regulates Transcription
- TCF dependent signaling in response to WNT
- Signaling by Hedgehog
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Degradation of GLI1 by the proteasome
- degradation of DVL
- Signaling by WNT in cancer
- GLI3 is processed to GLI3R by the proteasome
- Degradation of GLI2 by the proteasome
|
|
|
|
|
CTNNB1 and HDAC6 |
catenin (cadherin-associated protein), beta 1, 88kDa |
histone deacetylase 6 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- HSF1 activation
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Organelle biogenesis and maintenance
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- Signaling by NOTCH
- Assembly of the primary cilium
- Cellular response to heat stress
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- NOTCH1 Intracellular Domain Regulates Transcription
- Signaling by NOTCH1
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Signaling by NOTCH1 in Cancer
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
- FBXW7 Mutants and NOTCH1 in Cancer
|
|
|
|
|
CTNNB1 and RBBP5 |
catenin (cadherin-associated protein), beta 1, 88kDa |
retinoblastoma binding protein 5 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- formation of the beta-catenin:TCF transactivating complex
- PKMTs methylate histone lysines
- Signaling by Wnt
- deactivation of the beta-catenin transactivating complex
- Chromatin modifying enzymes
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by WNT in cancer
|
|
|
|
|
CTNNB1 and DVL1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
dishevelled segment polarity protein 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- WNT mediated activation of DVL
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- degradation of DVL
- negative regulation of TCF-dependent signaling by DVL-interacting proteins
- Signaling by Wnt
- Signaling by WNT in cancer
- PCP/CE pathway
- beta-catenin independent WNT signaling
|
|
|
|
|
CTNNB1 and DVL3 |
catenin (cadherin-associated protein), beta 1, 88kDa |
dishevelled segment polarity protein 3 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- WNT mediated activation of DVL
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- degradation of DVL
- negative regulation of TCF-dependent signaling by DVL-interacting proteins
- Signaling by Wnt
- Signaling by WNT in cancer
- PCP/CE pathway
- beta-catenin independent WNT signaling
|
|
|
|
|
CTNNB1 and CHD8 |
catenin (cadherin-associated protein), beta 1, 88kDa |
chromodomain helicase DNA binding protein 8 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by Wnt
- Signaling by WNT in cancer
- deactivation of the beta-catenin transactivating complex
|
|
|
|
|
CTNNB1 and PTPRU |
catenin (cadherin-associated protein), beta 1, 88kDa |
protein tyrosine phosphatase, receptor type, U |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
|
|
|
|
|
CTNNB1 and SKP1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
S-phase kinase-associated protein 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Signaling by the B Cell Receptor (BCR)
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Hedgehog 'off' state
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- truncated APC mutants destabilize the destruction complex
- TCF7L2 mutants don't bind CTBP
- Cyclin E associated events during G1/S transition
- Signaling by Wnt
- Regulation of PLK1 Activity at G2/M Transition
- Downstream signaling events of B Cell Receptor (BCR)
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- Degradation of beta-catenin by the destruction complex
- G1/S Transition
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- S33 mutants of beta-catenin aren't phosphorylated
- Signaling by NOTCH1 in Cancer
- Prolactin receptor signaling
- Mitotic G1-G1/S phases
- truncations of AMER1 destabilize the destruction complex
- Signaling by NOTCH
- Host Interactions of HIV factors
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- Regulation of APC/C activators between G1/S and early anaphase
- S Phase
- Signaling by ERBB4
- APC/C-mediated degradation of cell cycle proteins
- Signaling by Interleukins
- SCF(Skp2)-mediated degradation of p27/p21
- deletions in the AMER1 gene destabilize the destruction complex
- AMER1 mutants destabilize the destruction complex
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Interleukin-1 signaling
- Cyclin A:Cdk2-associated events at S phase entry
- SCF(Skp2)-mediated degradation of p27/p21
- Mitotic G2-G2/M phases
- Constitutive Signaling by NOTCH1 PEST Domain Mutants
- Adaptive Immune System
- Antigen processing: Ubiquitination & Proteasome degradation
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- HIV Infection
- APC truncation mutants have impaired AXIN binding
- G2/M Transition
- APC truncation mutants are not K63 polyubiquitinated
- S37 mutants of beta-catenin aren't phosphorylated
- Signaling by NOTCH1
- Class I MHC mediated antigen processing & presentation
- Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants
- Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling
- FBXW7 Mutants and NOTCH1 in Cancer
- Vpu mediated degradation of CD4
- G1 Phase
- Cytokine Signaling in Immune system
- Cell Cycle, Mitotic
- NOTCH1 Intracellular Domain Regulates Transcription
- Cyclin D associated events in G1
- Nuclear signaling by ERBB4
- Activation of NF-kappaB in B cells
- SCF-beta-TrCP mediated degradation of Emi1
- Regulation of mitotic cell cycle
- Signaling by Hedgehog
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Degradation of GLI1 by the proteasome
- Signaling by WNT in cancer
- GLI3 is processed to GLI3R by the proteasome
- Degradation of GLI2 by the proteasome
|
|
|
|
|
CTNNB1 and ASH2L |
catenin (cadherin-associated protein), beta 1, 88kDa |
ash2 (absent, small, or homeotic)-like (Drosophila) |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- formation of the beta-catenin:TCF transactivating complex
- PKMTs methylate histone lysines
- Signaling by Wnt
- deactivation of the beta-catenin transactivating complex
- Chromatin modifying enzymes
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by WNT in cancer
|
|
|
|
|
CTNNB1 and GSK3B |
catenin (cadherin-associated protein), beta 1, 88kDa |
glycogen synthase kinase 3 beta |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Signaling by the B Cell Receptor (BCR)
- Hedgehog 'off' state
- Signaling by FGFR in disease
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- AKT phosphorylates targets in the cytosol
- Signaling by EGFRvIII in Cancer
- Signaling by SCF-KIT
- DAP12 signaling
- Downstream signaling events of B Cell Receptor (BCR)
- Degradation of beta-catenin by the destruction complex
- PI3K/AKT activation
- PI-3K cascade
- RNF mutants show enhanced WNT signaling and proliferation
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- S33 mutants of beta-catenin aren't phosphorylated
- Beta-catenin phosphorylation cascade
- truncations of AMER1 destabilize the destruction complex
- Signaling by PDGF
- DAP12 interactions
- GAB1 signalosome
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- Signaling by ERBB4
- Constitutive PI3K/AKT Signaling in Cancer
- Role of LAT2/NTAL/LAB on calcium mobilization
- PI3K events in ERBB4 signaling
- Signaling by ERBB2
- Signaling by EGFR
- deletions in the AMER1 gene destabilize the destruction complex
- AMER1 mutants destabilize the destruction complex
- Downstream signal transduction
- Fc epsilon receptor (FCERI) signaling
- Signaling by EGFR in Cancer
- PI3K/AKT Signaling in Cancer
- CRMPs in Sema3A signaling
- Adaptive Immune System
- Axon guidance
- PIP3 activates AKT signaling
- APC truncation mutants have impaired AXIN binding
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- PI3K events in ERBB2 signaling
- Downstream signaling of activated FGFR
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- Signalling by NGF
- Semaphorin interactions
- Signaling by Ligand-Responsive EGFR Variants in Cancer
- Regulation of HSF1-mediated heat shock response
- Cellular response to heat stress
- NGF signalling via TRKA from the plasma membrane
- Signaling by Overexpressed Wild-Type EGFR in Cancer
- Signaling by FGFR
- TCF dependent signaling in response to WNT
- Signaling by Hedgehog
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
- GLI3 is processed to GLI3R by the proteasome
- Degradation of GLI2 by the proteasome
|
|
- Lithium
- 3-[3-(2,3-Dihydroxy-Propylamino)-Phenyl]-4-(5-Fluoro-1-Methyl-1h-Indol-3-Yl)-Pyrrole-2,5-Dione
- I-5
- N-(4-Methoxybenzyl)-N\'-(5-Nitro-1,3-Thiazol-2-Yl)Urea
- Staurosporine
- Indirubin-3\'-Monoxime
- Adenosine-5\'-Diphosphate
- (3e)-6\'-Bromo-2,3\'-Biindole-2\',3(1h,1\'h)-Dione 3-Oxime
- Alsterpaullone
- Phosphoaminophosphonic Acid-Adenylate Ester
- 2-(1,3-benzodioxol-5-yl)-5-[(3-fluoro-4-methoxybenzyl)sulfanyl]-1,3,4-oxadiazole
- 5-[1-(4-methoxyphenyl)-1H-benzimidazol-6-yl]-1,3,4-oxadiazole-2(3H)-thione
- (7S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoroethyl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one
- N-[2-(5-methyl-4H-1,2,4-triazol-3-yl)phenyl]-7H-pyrrolo[2,3-d]pyrimidin-4-amine
- 5-(5-chloro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine
- 3-({[(3S)-3,4-dihydroxybutyl]oxy}amino)-1H,2\'H-2,3\'-biindol-2\'-one
- N-[(1S)-2-amino-1-phenylethyl]-5-(1H-pyrrolo[2,3-b]pyridin-4-yl)thiophene-2-carboxamide
- 4-(4-CHLOROPHENYL)-4-[4-(1H-PYRAZOL-4-YL)PHENYL]PIPERIDINE
- ISOQUINOLINE-5-SULFONIC ACID (2-(2-(4-CHLOROBENZYLOXY)ETHYLAMINO)ETHYL)AMIDE
- (2S)-1-(1H-INDOL-3-YL)-3-{[5-(3-METHYL-1H-INDAZOL-5-YL)PYRIDIN-3-YL]OXY}PROPAN-2-AMINE
|
|
|
CTNNB1 and PPM1A |
catenin (cadherin-associated protein), beta 1, 88kDa |
protein phosphatase, Mg2+/Mn2+ dependent, 1A |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Loss of Function of TGFBR2 in Cancer
- IRS-mediated signalling
- mTOR signalling
- SMAD2/3 MH2 Domain Mutants in Cancer
- mTOR signalling
- TGFBR1 LBD Mutants in Cancer
- IGF1R signaling cascade
- Downregulation of SMAD2/3:SMAD4 transcriptional activity
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer
- IRS-related events triggered by IGF1R
- Generic Transcription Pathway
- Energy dependent regulation of mTOR by LKB1-AMPK
- PKB-mediated events
- PI3K Cascade
- Signaling by Insulin receptor
- TGFBR2 MSI Frameshift Mutants in Cancer
- Insulin receptor signalling cascade
- SMAD2/3 Phosphorylation Motif Mutants in Cancer
- Loss of Function of SMAD2/3 in Cancer
- Regulation of AMPK activity via LKB1
- TGFBR2 Kinase Domain Mutants in Cancer
- Loss of Function of SMAD4 in Cancer
- TGFBR1 KD Mutants in Cancer
- IRS-related events
- Loss of Function of TGFBR1 in Cancer
- IRS-mediated signalling
- Signaling by TGF-beta Receptor Complex
- Signaling by TGF-beta Receptor Complex in Cancer
- Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)
- PKB-mediated events
- PI3K Cascade
- SMAD4 MH2 Domain Mutants in Cancer
|
|
|
|
|
CTNNB1 and TGFBR1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
transforming growth factor, beta receptor 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Loss of Function of TGFBR2 in Cancer
- TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition)
- TGFBR2 MSI Frameshift Mutants in Cancer
- SMAD2/3 Phosphorylation Motif Mutants in Cancer
- Loss of Function of SMAD2/3 in Cancer
- TGFBR2 Kinase Domain Mutants in Cancer
- Downregulation of TGF-beta receptor signaling
- SMAD2/3 MH2 Domain Mutants in Cancer
- Loss of Function of SMAD4 in Cancer
- TGFBR1 KD Mutants in Cancer
- TGF-beta receptor signaling activates SMADs
- TGFBR1 LBD Mutants in Cancer
- Loss of Function of TGFBR1 in Cancer
- Signaling by TGF-beta Receptor Complex in Cancer
- Signaling by TGF-beta Receptor Complex
- SMAD4 MH2 Domain Mutants in Cancer
|
|
|
|
|
CTNNB1 and IGF2BP1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
insulin-like growth factor 2 mRNA binding protein 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA
|
|
|
|
|
CTNNB1 and KMT2D |
catenin (cadherin-associated protein), beta 1, 88kDa |
lysine (K)-specific methyltransferase 2D |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- formation of the beta-catenin:TCF transactivating complex
- PKMTs methylate histone lysines
- Signaling by Wnt
- deactivation of the beta-catenin transactivating complex
- Chromatin modifying enzymes
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by WNT in cancer
|
|
|
|
|
CTNNB1 and UBE2D1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
ubiquitin-conjugating enzyme E2D 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Loss of Function of TGFBR2 in Cancer
- Phosphorylation of the APC/C
- Negative regulators of RIG-I/MDA5 signaling
- Cellular Senescence
- SMAD2/3 MH2 Domain Mutants in Cancer
- APC/C:Cdc20 mediated degradation of Securin
- Downregulation of SMAD2/3:SMAD4 transcriptional activity
- Signaling by BMP
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer
- Generic Transcription Pathway
- TGFBR2 MSI Frameshift Mutants in Cancer
- SMAD2/3 Phosphorylation Motif Mutants in Cancer
- TRIF-mediated TLR3/TLR4 signaling
- Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase
- Loss of Function of SMAD4 in Cancer
- Senescence-Associated Secretory Phenotype (SASP)
- TGFBR1 KD Mutants in Cancer
- APC/C:Cdc20 mediated degradation of mitotic proteins
- Regulation of APC/C activators between G1/S and early anaphase
- APC/C-mediated degradation of cell cycle proteins
- APC/C:Cdc20 mediated degradation of Cyclin B
- Inhibition of the proteolytic activity of APC/C required for the onset of anaphase by mitotic spindle checkpoint components
- Toll Like Receptor 3 (TLR3) Cascade
- Toll Like Receptor 4 (TLR4) Cascade
- Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins
- APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint
- Mitotic Metaphase and Anaphase
- Adaptive Immune System
- Cellular response to hypoxia
- APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1
- Antigen processing: Ubiquitination & Proteasome degradation
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen
- Separation of Sister Chromatids
- Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha
- Inactivation of APC/C via direct inhibition of the APC/C complex
- Mitotic Anaphase
- TGFBR1 LBD Mutants in Cancer
- M Phase
- Inactivation of APC/C via direct inhibition of the APC/C complex
- Autodegradation of Cdh1 by Cdh1:APC/C
- Mitotic Spindle Checkpoint
- Activated TLR4 signalling
- Class I MHC mediated antigen processing & presentation
- Innate Immune System
- Loss of Function of SMAD2/3 in Cancer
- IKK complex recruitment mediated by RIP1
- TGFBR2 Kinase Domain Mutants in Cancer
- MyD88-independent cascade
- Inhibition of the proteolytic activity of APC/C required for the onset of anaphase by mitotic spindle checkpoint components
- Cell Cycle, Mitotic
- Loss of Function of TGFBR1 in Cancer
- RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
- Toll-Like Receptors Cascades
- Signaling by TGF-beta Receptor Complex
- Signaling by TGF-beta Receptor Complex in Cancer
- Regulation of mitotic cell cycle
- Cell Cycle Checkpoints
- SMAD4 MH2 Domain Mutants in Cancer
|
|
|
|
|
CTNNB1 and RUVBL1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
RuvB-like AAA ATPase 1 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Chromosome Maintenance
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- formation of the beta-catenin:TCF transactivating complex
- Deposition of new CENPA-containing nucleosomes at the centromere
- Telomere Extension By Telomerase
- Extension of Telomeres
- Signaling by Wnt
- HATs acetylate histones
- Chromatin modifying enzymes
- Telomere Maintenance
- Nucleosome assembly
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by WNT in cancer
|
|
|
|
|
CTNNB1 and NCOA2 |
catenin (cadherin-associated protein), beta 1, 88kDa |
nuclear receptor coactivator 2 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- PPARA activates gene expression
- Bile acid and bile salt metabolism
- Defective CYP2R1 causes Rickets vitamin D-dependent 1B (VDDR1B)
- Organelle biogenesis and maintenance
- Metabolism of lipids and lipoproteins
- Metabolic disorders of biological oxidation enzymes
- Phase 1 - Functionalization of compounds
- Defective CYP27B1 causes Rickets vitamin D-dependent 1A (VDDR1A)
- RORA activates circadian gene expression
- Regulation of cholesterol biosynthesis by SREBP (SREBF)
- Defective CYP26C1 causes Focal facial dermal dysplasia 4 (FFDD4)
- Generic Transcription Pathway
- Defective CYP2U1 causes Spastic paraplegia 56, autosomal recessive (SPG56)
- Cytochrome P450 - arranged by substrate type
- Endogenous sterols
- Transcriptional regulation of white adipocyte differentiation
- Biological oxidations
- Synthesis of bile acids and bile salts
- Orphan transporters
- Defective FMO3 causes Trimethylaminuria (TMAU)
- Defective TBXAS1 causes Ghosal hematodiaphyseal dysplasia (GHDD)
- Fatty acid, triacylglycerol, and ketone body metabolism
- Defective CYP11A1 causes Adrenal insufficiency, congenital, with 46,XY sex reversal (AICSR)
- Defective CYP27A1 causes Cerebrotendinous xanthomatosis (CTX)
- Defective CYP11B1 causes Adrenal hyperplasia 4 (AH4)
- Recycling of bile acids and salts
- Defective CYP26B1 causes Radiohumeral fusions with other skeletal and craniofacial anomalies (RHFCA)
- REV-ERBA represses gene expression
- Defective CYP1B1 causes Glaucoma
- Defective CYP17A1 causes Adrenal hyperplasia 5 (AH5)
- Mitochondrial biogenesis
- Defective CYP7B1 causes Spastic paraplegia 5A, autosomal recessive (SPG5A) and Congenital bile acid synthesis defect 3 (CBAS3)
- Defective CYP19A1 causes Aromatase excess syndrome (AEXS)
- Defective CYP4F22 causes Ichthyosis, congenital, autosomal recessive 5 (ARCI5)
- Defective CYP24A1 causes Hypercalcemia, infantile (HCAI)
- Synthesis of bile acids and bile salts via 27-hydroxycholesterol
- Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
- Defective MAOA causes Brunner syndrome (BRUNS)
- Defective CYP11B2 causes Corticosterone methyloxidase 1 deficiency (CMO-1 deficiency)
- YAP1- and WWTR1 (TAZ)-stimulated gene expression
- Activation of gene expression by SREBF (SREBP)
- Defective CYP21A2 causes Adrenal hyperplasia 3 (AH3)
- Regulation of lipid metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
- Transcriptional activation of mitochondrial biogenesis
- BMAL1:CLOCK,NPAS2 activates circadian gene expression
|
|
|
|
|
CTNNB1 and TLE1 |
catenin (cadherin-associated protein), beta 1, 88kDa |
transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila) |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Signaling by NOTCH1 HD Domain Mutants in Cancer
- Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- S33 mutants of beta-catenin aren't phosphorylated
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- Signaling by NOTCH1
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by NOTCH1 in Cancer
- truncations of AMER1 destabilize the destruction complex
- FBXW7 Mutants and NOTCH1 in Cancer
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Signaling by NOTCH
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- NOTCH1 Intracellular Domain Regulates Transcription
- deletions in the AMER1 gene destabilize the destruction complex
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by NOTCH1 PEST Domain Mutants in Cancer
- Signaling by WNT in cancer
|
|
|
|
|
CTNNB1 and SMARCA4 |
catenin (cadherin-associated protein), beta 1, 88kDa |
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 |
- APC truncation mutants have impaired AXIN binding
- misspliced GSK3beta mutants stabilize beta-catenin
- T41 mutants of beta-catenin aren't phosphorylated
- TCF7L2 mutants don't bind CTBP
- truncated APC mutants destabilize the destruction complex
- Signaling by Wnt
- binding of TCF/LEF:CTNNB1 to target gene promoters
- deactivation of the beta-catenin transactivating complex
- APC truncation mutants are not K63 polyubiquitinated
- disassembly of the destruction complex and recruitment of AXIN to the membrane
- S37 mutants of beta-catenin aren't phosphorylated
- Degradation of beta-catenin by the destruction complex
- AXIN mutants destabilize the destruction complex, activating WNT signaling
- RNF mutants show enhanced WNT signaling and proliferation
- S33 mutants of beta-catenin aren't phosphorylated
- XAV939 inhibits tankyrase, stabilizing AXIN
- Innate Immune System
- truncations of AMER1 destabilize the destruction complex
- CDO in myogenesis
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- Cytosolic sensors of pathogen-associated DNA
- formation of the beta-catenin:TCF transactivating complex
- phosphorylation site mutants of CTNNB1 are not targeted to the proteasome by the destruction complex
- AXIN missense mutants destabilize the destruction complex
- S45 mutants of beta-catenin aren't phosphorylated
- repression of WNT target genes
- beta-catenin independent WNT signaling
- deletions in the AMER1 gene destabilize the destruction complex
- Ca2+ pathway
- Myogenesis
- AMER1 mutants destabilize the destruction complex
- TCF dependent signaling in response to WNT
- LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production
- deletions in the AXIN genes in hepatocellular carcinoma result in elevated WNT signaling
- Signaling by WNT in cancer
|
- Chromatin modifying enzymes
- Chromatin organization
- misspliced LRP5 mutants have enhanced beta-catenin-dependent signaling
- TCF dependent signaling in response to WNT
- RNF mutants show enhanced WNT signaling and proliferation
- formation of the beta-catenin:TCF transactivating complex
- XAV939 inhibits tankyrase, stabilizing AXIN
- Signaling by Wnt
- Signaling by WNT in cancer
- RMTs methylate histone arginines
|
|
|
|
|